University of Maryland

TLAS Design Proposal

In response to the 2005 Annual AHS International Student Design Competition – Graduate Category

June 1, 2005

Benjamin Hein
Tim Beasman
Anne Brindejonc
Anirban Chaudhuri
Eric Parsons

Dr. Inderjit Chopra – Faculty Advisor
Dr. V.T. Nagaraj – Faculty Advisor
Nicholas Rosenfeld
Eric Silberg
Eric Schroeder
Atlas Heavy-Lift Helicopter

• A low-cost, low-risk solution for a shipboard compatible heavy-lift VTOL transport
 – Designed in response to 2005 AHS Request for Proposal, sponsored by Boeing

• Provides maximum productivity for minimum cost
 – Proven configuration, innovative technology
 – Designed for the rigors of ship-based deployment
 – Equipment and avionics designed for optimal mission capability
Mission Requirements

• Deliver payload from L-Class vessel to 125-nm radius
 – Primary payload: Future Combat System (20 tons)
 – Secondary payload: Two 463L pallets (10 tons total)

• Live on L-Class or CVN vessel
 – Automated structural folding for hanger-deck stowage
 – Facilitate shipboard maintenance

• 1000-nm self-deployment capability
• Maximum cruise speed at minimum cost
Configuration Selection

• Balanced approach considering cruise speed, shipboard compatibility, and cost
 – **Single Main Rotor:** efficient hover, operational flexibility, low risk
 – **Tandem / Coaxial:** high masts incur penalties in cruise performance and stowage
 – **Compounds:** wings incur downwash penalty, requires cost and weight to overcome
 – **Quad Tilt Rotor:** complex design carries large financial risk

Final Design

Atlas is a Single Main Rotor/Tail Rotor helicopter

Provides best performance at lowest cost
Sizing of Atlas

- **RFP requirements**
 - Sustained maneuver of twice standard turn rate at cruise speed (6°/sec)
 - Trade study: maximum cruise speed for a given blade loading during maneuver
 - Performance trim code determines stall speed for each blade loading
 - Shipboard Considerations
 - Minimum footprint, stowage, and deck clearance
 - Low rotor downwash (low disk loading) for ground crew safety

- **Sizing methodology developed using Tishchenko method**
 - Modified for heavy lift
 - Key trade studies
 - Blade loading
 - Blade aspect ratio
 - Solidity

- **Productivity**
 - Productivity = \(\frac{\text{Payload} \times \text{Range}}{\text{Cost} \times \text{Time}} \)
 - Productivity increased by decreasing Cost x Time
Atlas Configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takeoff Weight</td>
<td>108,500 lbs</td>
</tr>
<tr>
<td>Empty Weight</td>
<td>55,200 lbs</td>
</tr>
<tr>
<td>Installed Power</td>
<td>23,700 hp</td>
</tr>
<tr>
<td>Disk Loading</td>
<td>10.6 lb/ft²</td>
</tr>
<tr>
<td>Number of Blades</td>
<td>7</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>20</td>
</tr>
<tr>
<td>Main Rotor Dia.</td>
<td>116 ft</td>
</tr>
<tr>
<td>C_T/σ</td>
<td>0.079</td>
</tr>
<tr>
<td>Solidity (σ)</td>
<td>0.111</td>
</tr>
<tr>
<td>Acquisition Cost</td>
<td>$56 M</td>
</tr>
</tbody>
</table>

[Diagram of Atlas Configuration]

[Diagram of helicopter with dimensions and configurations]
Advanced Turboshaft Engines

- Atlas’ engines are more powerful, lighter, and more efficient than current heavy turboshafts

<table>
<thead>
<tr>
<th></th>
<th>Atlas Engine</th>
<th>AE1107</th>
<th>Performance Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>7,916 hp</td>
<td>6,150 hp</td>
<td>+ 29%</td>
</tr>
<tr>
<td>P/W</td>
<td>8.88 hp/lb</td>
<td>6.33 hp/lb</td>
<td>+ 40%</td>
</tr>
<tr>
<td>SFC</td>
<td>0.34 lb/hp/hr</td>
<td>0.44 lb/hp/hr</td>
<td>- 19%</td>
</tr>
</tbody>
</table>

- Large installed power gives exceptional performance
 - OEI hover at 3000 ft, ISA+20 in accordance with RFP requirement
 - 12,500-ft hover ceiling with 20-ton payload
 - 176-kt maximum cruise speed with 20-ton payload
Drivetrain Configuration

- Three-engine configuration provides benefits over two-engine configuration
 - Optimum installed power
 - Lower weight
 - Lower cost
 - Lower risk
- Innovative split-torque, face-gear transmission
 - 10% weight savings over conventional designs
 - Improvements in load-handling and layout
Shipboard Compatibility – Rotor Folding

- Trade study to determine number of blades: Seven chosen for folding consideration
 - Powered, automatic main rotor folding
 - Compact, lightweight hydraulic motors used for folding
 - Rotor blades locked with respect to hub to ease swashplate/pitch link loads
 - Original design eliminates hydraulic slip ring
 - Fixed hydraulic manifold on hub
 - Linear actuator with hydraulic quick disconnect extends from hub and connects to fitting on hub
Tail Rotor and Empennage

- Bearingless hub, composite blades
- Tail gearbox uses efficient face gears
- Empennage folds to meet height restrictions of CVN hangar
 - Automatic folding, fully integrated with main rotor folding

3 different folded configurations:
- “Fully Folded”: Rotor blades and tail boom fold; provides the maximum reduction in overall dimensions for storage
- “Main rotor only”: Compact configuration; tail boom does not block the rear loading door
- “Tail boom only”: Provides easy unobstructed access for tail assembly maintenance
Rotor Hub and Blades

- Innovative hybrid composite/titanium hub
 - Elastomeric bearings for low parts count, improved maintainability
 - Compact elastomeric lead-lag damper
 - Graphite/epoxy minimizes weight and improves maintainability

- Composite blades with tailored flap-bending/torsion coupling reduce 7/rev vibratory loads and reduce shaft power
- Blade manufacturing methods optimized for reduced cost
Active Trim Tab and Vibration Control

• Active trim tab for in-flight rotor blade tracking
 – Shape Memory Alloy (SMA) actuation
 – Reduced maintenance and operating costs
 – Less stringent blade manufacturing tolerances
 – Optimal tracking at all flight conditions

• Vibration control
 – LIVE isolators on main rotor pylon
 – Flap-bending/torsion coupling in composite blades
 – Adaptive magnetorheological (MR) tuned-mass dampers respond to changing vibration frequencies
 – Vibration levels below 0.05 g
Structure and Landing Gear

- Bulkheads constructed of graphite / epoxy
- Composite sandwich skin eliminates stringers and fasteners, simplifying manufacture
- Keel beams constructed as sine-wave beams to maximize energy absorption in the event of a crash
- Armored seats, Electromagnetic Polymer surrounding cockpit provides protection for pilots and crew

Retractable for reduced parasite drag
- Magnetorheological (MR) struts allow for changing loading conditions
Cargo Area

- Treadways, floor rollers, integral hard points, winch permit easy loading of FCS vehicle or two 463L pallets
- Landing gear adjusts cargo floor attitude for effortless loading
- Folding ramp and clamshell doors allow Atlas to transport large objects protruding out the aft of the cargo bay

- External sling-load capability
Adverse Weather and Night Operations

- Multi-mode radar (MMR)
 - Ground mapping
 - Terrain avoidance
- Forward Looking Infrared (FLIR)
- Night-vision goggle capable
- Navigation/avionics suite
 - Joint Tactical Radio System
 - Differential GPS
 - TACAN
 - Inertial Navigation System
 - Dual VHF Omnidirectional Range
 - Automatic Direction Finder
- Lightning protection: 200-kA strike get-home capability
- De-icing on main and tail rotor blades
Cockpit Features/Mission Systems

• Five reconfigurable 9”x12” Multi-Function Displays
• Fly-by-wire system
 – Low weight
 – Improved performance
• Shipboard landing aids
• Countermeasures
 – Radar/infrared warning receiver
 – IR jammer
 – chaff/flare dispenser
 – Hard points on fuselage for .50 caliber guns
• AFCS modes: SAS and autopilot
 – RD, RCAH, and ACAH
 – Flight track following, automatic position hold
• Environmental Protection
 – EMI Protection
 – Positive pressure and filters for NBC protection
• Backup instruments in case of failure
Maintainability

- Fuselage designed for good maintainability
 - Kick-in steps facilitate access to engines, transmission, and tail rotor
 - Engine cowlings double as maintenance platforms
 - Quick-access panels for LRUs
 - Easy access to all systems
 - Integrated walkway on tail boom

- Low-maintenance rotor and blades
 - Corrosion-resistant elastomeric bearings
 - Composites resist crack propagation and fatigue

- Health and Usage Monitoring System (HUMS) for fault detection
 - FADEC system also monitors engine status
 - Automatic track-and-balance via automated tracking tabs
 - Neural network post-flight data analysis
 - Replace parts based on wear, not flight-hours
Derivative Applications

• ASW Applications
 – Airborne Laser Mine Detection System
 – Sonar dunking/Sonobuoys

• Emergency medical evacuation
 – Carries 12 litters

• Troop transport
 – Up to 44 fully-equipped soldiers

• Firefighting
 – 20-ton Bambis Buckets
 – 5,200 gallon capacity

• Civil Transport

Bambi Buckets in action
Atlas provides performance enhancements over current heavy helicopters to significantly expand military logistics capabilities.

<table>
<thead>
<tr>
<th></th>
<th>Design Gross Weight (108,500 lb GTOW)</th>
<th>Max. Fuel, No Payload (68,500 lb GTOW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Cruise Speed</td>
<td>150 kts</td>
<td>160 kts</td>
</tr>
<tr>
<td>Max. Cruise Speed</td>
<td>176 kts</td>
<td>172 kts</td>
</tr>
<tr>
<td>Best Range Speed</td>
<td>145 kts</td>
<td>129 kts</td>
</tr>
<tr>
<td>Max. Range</td>
<td>325 nm</td>
<td>395 nm</td>
</tr>
<tr>
<td>Best Endurance Speed</td>
<td>81 kts</td>
<td>60 kts</td>
</tr>
<tr>
<td>Max. Endurance</td>
<td>2.8 hr</td>
<td>4.1 hr</td>
</tr>
</tbody>
</table>

$1000+ \text{ nm self-deployment range: exceeds RFP requirement}$
Conclusion

- Atlas: a reliable, highly-capable, versatile platform for heavy-lift transport
 - Low maintenance helicopter with significantly lower operating costs than current models
 - Comparable acquisition costs to current helicopter
 - Many additional applications
 - Exceeds the requirements set forth in the RFP at the lowest acquisition cost possible